Delta-doped ohmic contacts to n-GaAs
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A new type of nonalloyed ohmic contact to GaAs is realized by molecular beam epitaxy. The
ohmic characteristic of the metal-semiconductor junction is obtained by placing a highly §-doped
donor layer a few lattice constants away from the metal-semiconductor interface of the contact
and thus keeping the tunneling barrier extremely thin. The current-voltage characteristic of the &-
doped contacts is strictly linear. The measured contact resistance is in the 107° ) cm? range.
Theoretical analysis of the tunneling current through the triangular barrier predicts contact
resistances in the range 107-10~° Q cm?. In spite of the high doping concentration (10°°-10%'
m ) the surface morphology of the sample shows no degradation.

Ohmic contacts which exhibit a linear current-voltage
characteristic are an important part of all semiconductor
devices, such as field-effect transistors, light-emitting di-
odes, and lasers. Ohmic contacts eliminate the inherently
strong influence of the highly resistive surface depletion re-
gion on the current-voltage characteristic of a metal-semi-
conductor junction. The surface depletion region was first
explained by the difference in work functions of the metal
and the semiconductor, later by Fermi-level pinning at the
semiconductor surface.' The Fermilevel in turn is pinned by
surface states energetically located in the middle of the for-
bidden energy gap. Previously, two basic ways have been
employed to produce ohmic contacts to a semiconductor.
(i) A metal can be alloyed into the semiconductor, with the
metal impurities acting as donors or acceptor in the semicon-
ductor. Recent results on alloyed ohmic contacts to GaAs
show that in addition to the simple diffusion a formation of
domains with different chemical composition occurs.? (ii) A
second interesting way to form an ohmic contact was pro-
posed by Stall e al.* They grew a thin Ge layer on top of an n-
GaAs epitaxial layer. Charge carriers must overcome fwo
low barriers (metal-Ge and Ge-GaAs) of height | ¢, instead
of one barrier of height ¢,.* The resulting increase of the
current due to thermal emission is equal to

2exp( — qdg/2kT)/ exp( — gbz/kT). (1)

This ratio amounts to 6.5 107 at room temperature and
shows the significant resistance decrease of the proposed
method.

In this letter we investigate for the first time the fabrica-
tion of ohmic metal-semiconductor contacts employing the
5-doping technique.® First we outline the theoretical princi-
ple of the new contact and calculate the tunneling current
and the contact resistance. Next, experimental results on the
current-voltage characteristic, the contact resistance, and
the surface morphology are presented.

The energy-band diagram of a §-doped epitaxial layer is
shown in Fig. 1. Donors are located at a distance z,, from the
surface and the doping profile can be described by the delta
function,
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Np(z2) = NP5z —zp), (2)

where N 2 denotes the two-dimensional doping concentra-
tion. The Dirac delta function is a useful way to describe
analytically the charge in 5-doped layers, even though the -
doped function is strictly a singular relation with a problem-
atic physical meaning at z~z,,.

The thickness 7 of the tunneling barrier depends on the
applied voltage ¥ according to

t=2p5/(85 — V) (V<0). 3

We will restrict ourselves to the case V<0 which inherently
has a larger resistance than the case ¥ > 0. The basic idea of
the new ohmic contact is to keep the tunneling barrier thin
and consequently make quantum-mechanical tunneling
through the barrier the dominant transport mechanism. A
major fraction of electrons originating from donors of the &-
doped layer occupy surface states at the metal-semiconduc-
tor interface, as illustrated in Fig. 1. Assuming (i) Fermi-
level pinning at an energy gé, below the conduction-band
edge, and (ii) a Fermi energy that coincides with the con-
duction-band edge for z>z,, the (minimum) two-dimen-
sional (2D) donor concentration is given by

/'
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Ng(Z)=NZP8(z-2, )\

FIG. 1. Energy-band diagram of a 5-doped n-type semiconductor-metal
junction. The donors are located at a distance z, from the metal-semicon-
ductor interface. The thickness of the tunneling barrier depends on the ap-
plied voltage.

glo/aplcnésg



103 -
10"
1x 1013

105 -

106 -
5x10%2

SPECIFIC CONTACT RESISTANCE g (Rem?)
2D~ DONOR CONCENTRATION N?)D (cm'?)

107 -

oo L 2x10%2

1079 TR WS WY N U SN WU S | 1x 10 12
0 20 40 60 80 00

DISTANCE FROM INTERFACE Z{4)

FIG. 2. Specific contact resistance p, [Eq. (7)] (left ordinate) and mini-
mum donor concentration [Eq. (4)] (right ordinate) as a function of the
distance z,, of the dopant atoms from the interface, as shown in the inset.

NP =€dg/qzp, 4)
where ¢ and ¢ are the permittivity of the semiconductor and
the elementary charge, respectively. The 2D donor concen-
tration given by Eq. (4) is shown on the right-sided ordinate
of Fig. 2 as a function of the distance z,,. The formation of
impurity tail states is not included in this present approach.
The tunneling current density through a triangular barrier is
according to Simmons®

-4
= amy TP 2
2V B & )1/2]]
_(1+.&;—)exp[ a( 5 +V , (5)

with

Regarding only the first term® of Eq. (5) we obtain the well-
known Fowler-Nordheim equation,

2

. g (85/2) ( 20 ey -—)

= ————exp| — = 2gm* /2. (6)
=GP V2gm* \[dy

The contact resistance is then obtained by inserting Eq. (3)
into Eq. (6) and differentiating Eq. (6) with respect to V-

2
7 = () (o)

2z
xexp(-——;leqlqm*(ﬁ,,). (7

The specific contact resistance obtained by Eq. (7) is plotted
in Fig. 2 (left-sided ordinate). Extremely low calculated
contact resistances in the range 10~7-107° Q cm? are ob-
tained for sufficiently small distances z,,. Rewriting Eq. (6)
in the form (¥~0),
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FIG. 3. (a) Current-voltage characteristic of a 8-doped ohmic contact
(r =235 um). The total resistance amounts to R; = 1.4 ). (b) Contact
resistance of -doped ohmic contacts as a function of inverse radii. The spe-
cific contact resistance of p, = 6.3 X 107 ° (2 cm* is obtained by fitting Eq.
(9) to the experimental results (dark triangles).

j~exp( _ZD/dO)) (8)
yields

d,=#/Jdgm*s, =562 A.

Accidentally the length d,, coincides approximately with the
lattice constant a, = 5.6533 A of GaAs. The contact resis-
tance is consequently low, as long as z,, is on the order of the
lattice constant. A dopant layer in proximity to the semicon-
ductor surface is therefore essential for a low-resistance oh-
mic contact. The plot of Fig. 2 is drawn for z, > 10 A, be-
cause the calculation relies on the effective mass
approximation (EMA) which requires a periodic lattice po-
tential. For lengths z,, =a, the EMA is hardly fulfilled.
The growth of the §-doped contacts is performed in a
Vacuum Generator V80 molecular beam epitaxy (MBE)
system equipped with two growth chambers interconnected
by a trolley interlock stage. In this system we use conven-
tional effusion cells for evaporation of the group III ele-
ments. Arsine (AsH,) that is cracked when entering the
MBE chamber is used as arsenic supply. The growth of n-
GaAs:Si is interrupted for 23 min by closing the Ga effusion
cell to form the 8-doped layers yielding a two-dimensional
concentration of N2 =5x10"* cm~2 The distance z,
between S-doped layer and surface is selected to be 25 A. A
total number of five 5-doped planes, each separated by 25 A,
is used to facilitate ohmic contact formation and to make the
epitaxial layer n type. A doped buffer layer (N, = 10"
cm >, d =1 um) is used on top of the heavily doped n*-
GaAs substrate. The physical three-dimensional concentra-
tion of the &-doped layers in this study is (N2P)3/2
= 3.5 10*° cm 2 and exceeds significantly the concentra-
tion used in earlier studies on MBE grown ohmic contacts.”
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FIG. 4. Surface morphology of a highly 8-doped GaAs surface used for
ohmic contact fabrication (Nomarski contrast photomicrograph at 700 %
magnification ).

After crystal growth the samples are immediately mounted
into the vacuum chamber of an evaporator. A molybdenum
shadow mask with various hole sizes is used during evapora-
tion of 200 A Cr and 2000 A Au.

Excellent ohmic characteristics of a circular §-doped
contact of radius r = 255 um are shown in Fig. 3(a). The
total resistance of R, = 1.4 {2 demonstrates the high poten-
tial of the present ohmic contact method. The current-vol-
tage characteristic exhibits strictly linear behavior with S-
and N-shaped patterns absent on all scales. The contact re-
sistance is evaluated according to the seminal publications of
Cox and Strack,® who introduced the formula

Ry —Ry=[(pd) +p ]/(mr) (valid for d<r),

9

where p is the specific resistance of the epitaxial layer, d the
thickness of the epilayer, r the contact radius, and R, and R,
the total and back-side resistance, respectively. Due to the
high doping concentration of the buffer layer (¥, = 10'®
cm?), the pd term is not an essential contribution to the
measured resistance R;. The specific contact resistance is
evaluated by plotting the measured R, — R,, values versus
(1/r) and by adjusting the specific contact resistance in Eq.
(9) to get best agreement between the experimental points
and the theoretical curve. The contact resistances are typi-
cally in the 107° Q) cm? range. The lowest contact resistance
measured is 2.5X 10~ ° Q) cm®. An example ofa (R, — R,)
versus inverse radius (1/r) plot is depicted in Fig. 3(b). The
calculated fit to the experimental data yields a specific con-
tact resistance of 6.3 107 °  cm?, which is a moderately
good value. The surface of the ohmic contact metal remains
smooth, because such contacts require no alloying. The
problems of balling-up in conventionally alloyed AuGe-
based contacts”® are consequently avoided. The high three-
dimensional Si concentrations (N, =~ 10*°-10%' cm ™) used
in this study raise the question whether Si donors exhibit
amphoteric behavior.” The low experimental contact resis-
tance demonstrates, however, that compensation does not
affect the properties of §-doped ohmic contacts drastically.

Finally, we studied the surface morphology of §-doped
GaAs layers using an optical microscope. Figure 4 shows a
Nomarski micrograph of a heavily 5-doped GaAs layer and
reveals no defect such as cross hatch'® or precipitates.'' No
defects originating from the §-doped layers have been found.
The microscopic formation of §-doped donor planes needs
further investigations. It is noteworthy that the reflection
high-energy electron diffraction (RHEED) pattern re-
vealed a transition from the 2 X 4 to the 1 X 3 surface recon-
struction.'? Delta-doped ohmic contacts have important im-
plications on future electron devices and integrated circuits
(IC). In three-dimensional GaAs IC’s our new type of con-
tact should not perturb lower device regions, as alloyed con-
tacts do. Furthermore, §-doped ohmic contacts can be used
in ballistic GaAs structures for contacting the narrow
base."*

In conclusion, we have realized a new type of ohmic
contact by heavily § doping GaAs 25 A below the GaAs-
metal interface. The characteristics of the 8-doped ohmic
contacts grown by molecular beam epitaxy are strictly lin-
ear. The nonalloyed ohmic contacts have a specific contact
resistance in the 10~ ®Q cm? range. Both epitaxial GaAs and
the metal contact have an excellent surface morphology. The
theoretical evaluation of the contact resistance by calcula-
tion of the tunneling current reveals contact resistance in the
107 ’~10~° Q cm? range. The new ohmic contact can be
used in future GaAs devices, such as ballistic transistors
with narrow base widths and 3D GaAs integrated circuits.
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